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Abstract Results of multi-environment trials to evalu-
ate new plant cultivars may be displayed in a two-way
table of genotypes by environments. Different es-
timators are available to fill the cells of such tables. It
has been shown previously that the predictive accuracy
of the simple genotype by environment mean is often
lower than that of other estimators, e.g. least-squares
estimators based on multiplicative models, such as
the additive main effects multiplicative interaction
(AMMI) model, or empirical best-linear unbiased pre-
dictors (BLUPs) based on a two-way analysis-of-vari-
ance (ANOVA) model. This paper proposes a method
to obtain BLUPs based on models with multiplicative
terms. It is shown by cross-validation using five real
data sets (oilseed rape, Brassica napus L.) that the
predictive accuracy of BLUPs based on models with
multiplicative terms may be better than that of least-
squares estimators based on the same models and also
better than BLUPs based on ANOVA models.

Key words Genotype by environment interaction ·
Mixed model · Mean squared error of prediction ·
Brassica napus L. · Cross-validation · Additive
main effects multiplicative interaction (AMMI) ·
Shifted multiplicative model (SHMM) ·
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Introduction

An important result of multi-environment trials is a
two-way table displaying estimated yields of genotypes
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in the various environments. Such tables are the basis
for making recommendations for specific environ-
ments and for studying genotype by environment
interaction. The most natural and most common
estimator used in genotype by environment tables is
the simple average across replications for a genotype
in an environment. It has been shown, however,
that alternative estimators may be predictively
more accurate than the simple mean, e.g. least-
squares estimators based models with multiplicative
terms such as the additive main effects multipli-
cative interaction (AMMI) model (Gauch 1992),
shrinkage estimators based on multiplicative models
(Cornelius et al. 1994, 1996), and best linear unbiased
predictions (BLUPs) based on a two-way analysis
of variance (ANOVA) model (Cornelius et al. 1994,
1996; Piepho 1994).

The usual BLUP, as considered in Piepho (1994),
and Cornelius et al. (1994), assumes that genotype
by environment interaction effects are stochastically
independent. There are other possible variance-
covariance structures to be considered for BLUP.
Multiplicative terms, if viewed from a mixed-model
perspective, imply correlations among interactions.
Mixed models with multiplicative terms are closely
related to the so-called factor-analytic variance-
covariance structure advocated by Jennrich and
Schluchter (1986). Oman (1991), Gogel et al. (1995) and
Piepho (1997 a) have shown how to fit models with a
factor-analytic variance-covariance structure to geno-
type by environment data. Subsequently, Piepho
(1997b) suggested how to obtain BLUPs of multiplica-
tive terms in such models and how to construct biplots
using these BLUPs. The purpose of the present paper is
to investigate whether BLUPs obtained under a fac-
tor-analytic variance-covariance structure lead to pre-
dictions better than BLUPs based on a two-way
ANOVA model (Piepho 1994) and also better than
estimators based on least-squares estimates of multipli-
cative terms.



Theory

For trials laid out as a randomized complete block design, the
ANOVA model is given by
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where the various terms are: y
ijr
"performance of the r-th replicate

of the i-th genotype in the j-th environment (i"1,2 , G; j"12 ,
E; r"12 , R ), k"general mean, g

i
"effect of the i-th genotype,

e
j
"effect of the j-th environment, u

ij
"interaction of the i-th geno-

type with the j-th environment, b
jr
"effect of r-th block in the j-th

environment, and e
ijr
"error. The model for means across replica-

tions is

y
ij
"k#g

i
#e@

j
#u

ij
#e

ij
, (2)

where y
ij
"yN

ij
"+

r
y
ijr

/R, e@
j
"e

j
#&

r
b
jr
/R and e

ij
"&

r
e
ijr

/R. The
quantity that needs to be estimated to fill a two-way table of
genotypes by environments is

z
ij
"k#g

i
#e@

j
#u

ij
, (3)

i.e. the conditional expectation of y
ijr

, given the genotype and the
environment. The interaction term u

ij
may be modelled by multipli-

cative terms as follows:

u
ij
"

K
+
k/1

w
ik

j
jk
#l

ij
, (4)

where w
ik

and j
jk

are the k-th scores [k"1, 2 , K; K4max(G!1,
E!1)] corresponding to, respectively, the i-th genotype and the j-th
environment, and v

ij
is a residual interaction term. The genotypic

scores w
ik

can be interpreted as a sensitivity of the i-th genotype to
a hypothetical unobservable environmental variable j

jk
.

Model (2) [in conjunction with the model (4) for the term u
ij
] may

be simplified by dropping one of the terms k, g
i
and e@

j
. Following

Denis and Gower (1996), we denote the class of models generated by
(2) and (4) as B(k, g, e@, n

K
) and enter asterisks to indicate terms

dropped from the model. For example B(k, g, e@, n
1
) denotes an

AMMI model with one multiplicative term and B(k, *, *, n
2
) is the

shifted multiplicative model (SHMM) of Seyedsadr and Cornelius
(1992) with two multiplicative terms. The maximum number of
multiplicative terms for the various models is given in Table 1.

When both genotypes and environments are treated as fixed
factors, the parameters k, g
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ordinary least squares (Denis and Gower 1996). The interaction
effect is estimated by
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where wL
ik

and jK
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are the least squares estimates of w
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and j
jk

,
respectively. Except for B(k, *, *, n

K
) least-squares estimation

amounts to first fitting the grand mean (if k is in the model) and main
effects for genotypes (if g

i
is in the model) and environments (if e@

j
is in

the model) to the data y
ij

and then subjecting the matrix of residuals
to a singular value decomposition (SVD). For B(k, *, *, n

K
), Seyed-

sadr and Cornelius (1992) proposed a Newton-Raphson algorithm.
In this paper, a derivative-free method proposed by Piepho (submit-
ted) is used.

If environments or genotypes are considered random, effects may
be estimated by BLUP. A factor is commonly taken as random if the
observed levels may reasonably be regarded as a random sample
from a population. The assumption of a truly random sample is
often debatable for both environments and genotypes. Nevertheless,
it is frequently assumed that environments are random, mainly to
allow inferences which are not restricted to the observed environ-
ments. Hill and Rosenberger (1985) and Stroup and Mulitze (1991)

Table 1 Maximum number of multiplicative terms and Gollob’s df
for different models with multiplicative terms used to compute the
shrinkage estimates of Cornelius et al. (1996)

Model Maximum number of Gollob’s df
multiplicative terms (K) used for shrinking k-th

multiplicative term

B(k, g, e@, n
K
) min(G!1, E!1) G#E!2k!1

B(k, g, *, n
K
) min(G, E!1) G#E!2k

B(k, *, e@, n
K
) min(G!1, E) G#E!2k

B(k, *, *, n
K
) min(G, E) !

B(*, *, *, n
K
) min(G, E) G#E!2k#1

!No shrinkage estimates computed

showed that assuming random genotypes may be preferable in terms
of predictive accuracy even when genotypes would be considered
fixed by conventional standards. Using five faba bean data-sets,
Piepho (1994) showed that the predictive accuracy of BLUPs based
on a two-way ANOVA model differed only slightly depending on
whether genotypes, environments, or both, were regarded as random
and that the most important assumption was that interactions are
random.

For the factor-analytic variance-covariance structure considered
in this paper, it is necessary that one factor be regarded as fixed,
while the other is taken as random. In the real data-sets that are used
in this paper, the number of genotypes exceeds that of environments
(G<E) and the number of environments is relatively small. Fitting
to such data a model for random environments with a factor-ana-
lytic variance-covariance structure may cause estimability problems,
showing in a failure of the REML algorithm to converge. This is
a result of the large number of parameters to be estimated for the
variance-covariance structure. For this reason, environments will be
taken as fixed and genotypes as random. It is admitted that this
model choice is justified by rather pragmatic arguments and that the
assumption of random genotypes is made mainly to obtain shrink-
age estimates (BLUPs) of interaction terms u

ij
.

Taking genotypes as random and environments as fixed in (2) and
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so restrictions have to be imposed to ensure identifiability. It is
convenient to require p2
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Note that in the mixed-model case, one may drop main effects for
genotypes and/or environments, as in the fixed-effects case, so the
same set of models can be considered for prediction. To make
a distinction from the fixed-effects models, the mixed models will be
denoted as B3' (k, g, e@, n

K
), where the superscript ‘‘rg’’ stands for

‘‘random genotypes’’. It is stressed that all of these models have the
residual interaction variance component p2

v
. For K"0, one obtains

the BLUPs based on common analysis of variance models with
independent interaction effects. Models B3' (*, *, *, n

K
) have neither

a general mean nor main effects. These models are not considered
further, since they imply an expected value of zero for all observa-
tions, which does not seem sensible.

The factor-analytic variance-covariance structure may be re-
garded as an approximation to the completely unstructured vari-
ance-covariance matrix. For this reason, I am also considering
models with an unstructured variance-covariance matrix. These
models can be written as
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There are many derivations of BLUP (Searle et al. 1992). Here, the
one based on the multivariate normality assumption will be used for
brevity. For prediction of z

i
"(z

i1
,2 , z

iE
)@, only observations of the

i-th genotype are informative, provided the variance components are
known. So it suffices to consider the joint distribution of yi and z

i
.

Assuming multivariate normality, we have

A
z
i

y
iB&NCA

l

lB , A
C

C

C

VBD , (9)

where

C"V!Ip2
e
/R. (10)

The conditional distribution of z
i
for given y

i
is

(z
i
Dy

i
)&N[l#CV~1 (y

i
!l), C!CV~1C] . (11)

The conditional expectation l#CV~1 (y
i
!l ) is the BLUP of zi ,

provided C, V and l are known (Searle et al. 1992: 273), and it is also
a Bayes estimator under normal priors (Robinson 1991; Searle et al.
1992: 275). In practice, estimates are used in place of unknown
parameters. The resulting estimator will be referred to as empirical
BLUP, the term ‘empirical’ indicating that unknown parameters are
estimated from the data. The properties of empirical BLUPs are not
known, and it should be investigated, e.g. by simulation, whether
they perform similarly as BLUPs for known parameters. Estimates
of variance components may be obtained by usual procedures for
linear mixed models, i.e. by restricted maximum likelihood (REML)
or maximum likelihood (ML). In the present paper, the REML
method of the MIXED procedure of SAS is used (SAS Institute
1997). For advantages of REML over ML see Searle et al. (1992).
The expectation l is estimated by generalized least squares (equiva-
lent to least squares based on models considered in this paper,
provided data are balanced).

Cornelius et al. (1996) proposed shrinkage estimators, in which
least-squares estimates of multiplicative terms are multiplied by
shrinkage factors computed from F-statistics appropriate for testing
these same terms. The resulting shrinkage estimators can be ex-
pressed in a form analogous to BLUPs based on a two-way
ANOVA model with stochastically independent interactions, but
they are not equivalent to the BLUPs presented in this paper.
Assuming that genotypes and environments are random and that
interactions are independent, the BLUP of a cell mean can be
written
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where /K
k
and v

k
are, respectively, the singular value and the degrees

of freedom (df ) associated with the k-th multiplicative term, and s2 is
the residual error mean square. Note that F

k
has the form of an

F-statistic for testing the k-th multiplicative term. Cornelius et al.
(1996) discuss several ways of obtaining v

k
. The simplest option is to

use Gollob’s df, which is equal to the number of parameters of
a multiplicative term, reduced by the number of constraints on the
parameters. More appropriate dfs involve intensive simulations. For
simplicity, I am using only Gollob’s df to obtain shrinkage factors
for least-squares estimates of multiplicative terms (see Table 1).
Least-squares estimates of main effects of genotypes and environ-
ments are multiplied by the shrinkage factors S
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and S
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ly, as in (12). I am not considering the shrinkage estimators for B(k,
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), because they require an iterative scheme and are computa-
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Cross-validation

To assess the performance of different methods of prediction,
I used five oilseed rape (Brassica napus L.) data-sets from official
variety trials by the Bundessortenamt (Hannover, Germany). The
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Table 2 Structure of oilseed rape (B. napus ¸.) data-sets by Bundes-
sortenamt (Hannover, Germany). Trials were laid out as random-
ized complete block designs

Year Genotypes Locations Replications

1985 32 8 4
1986 35 11 4
1987 35 10 4
1988 42 9 4
1989 41 10 4

trials were laid out as randomized complete block designs. The
structure of the data-sets is described in Table 2. The performance
was evaluated using a cross-validation procedure based on splitting
the data into modelling and validation data (Gauch 1988). For the
data-sets used there were four replications per environment (R"4).
For each environment the four complete blocks were randomly split
into three blocks for modelling and one block for validation. Keep-
ing blocks intact is preferred to splitting data completely at random,
which would introduce added noise to modelling and validation
data compared to the complete dataset (Piepho 1994). In yield trials,
one is usually mainly interested in predicting differences among
genotypes d

ii{j
"z

ij
!z

i{j
(i@Oi) rather than the genotypic perfor-
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themselves. Thus, an assessment of the predictive accu-
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where f
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"yV
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ij
. The data splitting and the subsequent cross-

validation was replicated 1000 times and the MSEP was averaged
over the replications.

All computations were done using the SAS System (SAS Institute,
Inc.). Estimation of variance components was based on cell means
y
ij
. The estimates of V and of p2

p
obtained from the analysis of the

cell means of the complete data (VK
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and pL 2
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subsequent computations. An estimate of the variance component
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as fixed. The modeling data had
R!1 replications. Thus, estimates of V and C for the modeling data
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These estimates were then used to compute BLUPs from the
modelling data in each iteration of the cross-validation procedure.
Alternatively, one could have estimated variance components in
each iteration of the cross-validation procedure. However,
REML estimation of the factor-analytic structures turned out to be

computationally very demanding, so that repeated estimation on
each of 1000 iterations was not feasible. Also, since the computa-
tional effort for the estimation of V turned out to increase notably
with the number of multiplicative terms, only models with up to
K"7 were considered. This seemed justified because the differences
in MSEP among models with many multiplicative terms was usually
marginal. The residual variance s2 was estimated from the whole
data and stored to compute S

k
by equation (13) in each iteration. In

equation (13), R was replaced by (R!1). Shrinkage factors S
G

and
S
E

for the estimates of Cornelius et al. (1996) were also computed
from the complete data, stored and used in cross-validations. To
take account of the fact that for the complete data there were
R replications per environment, while for the modelling data there
were (R!1) observations, S

G
and S

E
for the modelling data were

computed as
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where MS
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are the mean squares for, respectively, geno-
types and environments of an ANOVA based on the replicate data
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Results

For all data sets, the estimator with the smallest
MSEP was among the BLUPs (Table 3). The shrinkage
estimators of Cornelius et al. (1996) (Table 4) were
better than the best least-squares estimator based on
models with multiplicative terms (Table 5). Among
BLUPs, those based on a model without environ-
mental main effects were inferior to those based on
a model with environmental main effects. Among
BLUPs based on models with environmental main
effects, the MSEP differed only slightly, except for the
model B3' (k, *, e@, *), which had a markedly larger
MSEP than other models. In case of the 1988 data-set,
BLUPs based on UN(k, e@ ) had the smallest MSEP,
while for the other data-sets the BLUPs with the
smallest MSEP were based on a model with multiplica-
tive terms. There were four groups of mixed models
given by whether or not main effects for genotypes or
environments were included. Within such a group,
models with independent interactions were always in-
ferior to at least one of the models with factor-analytic
or unstructured variance-covariance matrices. For
example, in the 1985 data-set, B3' (k, g, e@, *), which has
both genotypic and environmental main effects, was
inferior to B3' (k, g, e@, n

k
) (k"1, 2,2 , 7). The shrink-

age estimators of Cornelius et al. (1996) were often
slightly better than BLUPs based on models with inde-
pendent interactions. This is in reasonable agreement
with the findings of Cornelius et al. (1996) for other
data-sets.
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Table 3 MSEP (mean square
error of prediction; see eq. 14)
of BLUPs (best linear unbiased
predictions) based on different
mixed models for oilseed rape
(B. napus L.) data-sets

Model 1985 1986 1987 1988 1989

B3'(k, g, e@, *) 33.88 37.96 25.74 21.92 40.94
B3'(k, g, e@, n

1
) 33.38 37.58 25.44 21.52 40.92

B3'(k, g, e@, n
2
) 33.28 37.86 25.18 21.46 41.50

B3'(k, g, e@, n
3
) 33.20 37.70 25.20 21.46 40.94

B3'(k, g, e@, n
4
) 33.40 37.70 25.04 21.30 40.70

B3'(k, g, e@, n
5
) 33.26 37.92 24.86 21.30 40.42

B3'(k, g, e@, n
6
) 33.24 37.88 24.62 21.24 40.16

B3'(k, g, e@, n
7
) 33.24 38.20 24.58 21.24 40.44

B3'(k, *, e@, *) 34.96 40.22 27.00 22.44 42.96
B3'(k, *, e@, n

1
) 33.92 37.68 25.46 21.62 41.94

B3'(k, *, e@, n
2
) 33.46 37.92 25.18 21.54 42.66

B3'(k, *, e@, n
3
) 33.42 37.72 25.14 21.42 42.28

B3'(k, *, e@, n
4
) 33.60 37.66 25.08 21.38 41.56

B3'(k, *, e@, n
5
) 33.38 37.62 24.96 21.36 41.26

B3'(k, *, e@, n
6
) 33.46 37.92 24.74 21.32 41.02

B3'(k, *, e@, n
7
) 33.40 37.96 24.68 21.30 41.20

UN(k, e@) 33.22 37.96 24.62 21.18 40.78

B3'(k, g,*, *) 34.88 41.28 27.70 22.68 44.84
B3'(k, g, *, n

1
) 33.98 38.26 26.06 22.10 42.86

B3'(k, g, *, n
2
) 33.92 38.34 25.76 21.90 41.92

B3'(k, g, *, n
3
) 33.84 38.46 25.74 21.88 42.90

B3'(k, g, *, n
4
) 33.82 38.02 25.80 21.88 42.20

B3'(k, g, *, n
5
) 33.76 38.18 25.34 21.78 41.80

B3'(k, g, *, n
6
) 33.82 38.12 25.16 21.74 41.56

B3'(k, g, *, n
7
) 33.82 38.30 25.22 21.70 41.66

B3'(k, *, *, *) 35.52 41.54 27.62 22.76 44.78
B3'(k, *, *, n

1
) 34.34 38.46 26.44 22.24 43.04

B3'(k, *, *, n
2
) 34.24 38.06 25.40 21.82 41.94

B3'(k, *, *, n
3
) 34.18 38.40 25.36 21.76 42.68

B3'(k, *, *, n
4
) 34.14 38.12 25.38 21.72 42.22

B3'(k, *, *, n
5
) 34.12 38.14 25.24 21.70 41.90

B3'(k, *, *, n
6
) 34.14 38.16 25.10 21.66 41.78

B3'(k, *, *, n
7
) 34.16 38.18 25.14 21.64 41.58

UN(k, *) 33.88 38.02 24.86 21.56 41.08

Table 4 MSEP (mean square error of prediction; see eq. 14) of
shrinked least squares estimates based on different fixed effects
models for oilseed rape (B. napus L.) data-sets, using the shrinkage
estimators of Cornelius et al. (1996) with Gollob’s df. Models were
estimated by least squares

Model 1985 1986 1987 1988 1989

B(k, g, e@, n
K
) 34.84 39.48 26.24 22.30 42.47

B(k, *, e@, n
K
) 35.05 39.73 26.01 22.26 42.48

B(k, g, *, n
K
) 35.15 39.67 26.51 22.42 42.95

B(*, *, *, n
K
) 34.87 39.49 25.94 22.30 42.37

Discussion

This paper has been restricted to the problem of
obtaining good estimates of cells in a two-way table, in
which observations are available for all cells. The term
‘prediction’, as used to label estimates of realized values
of random effects (BLUPs), is somewhat misleading in

this context, since nothing new is predicted. Clearly, the
‘predictions’ are only for environments under trial, not
for ‘new’ environments. At times, the main interest is in
predictions for new environments not under trial. This
problem is dealt with by Weber and Westermann
(1994) and Piepho et al. (1998).

BLUPs have a clearly understood theoretical basis.
They have the smallest mean squared error of predic-
tion among all linear unbiased predictors, provided the
assumed model holds and the parameters of the model
are known (Searle et al. 1992). If parameters are esti-
mated, this optimality no longer holds, but it can be
hoped that the performance of empirical BLUPs is not
far from optimal. Since optimality is restricted to the
class of linear unbiased predictors, and since one never
knows the ‘‘true’’ model in practice, there may other
predictors with a smaller mean squared error of predic-
tion. It has been shown previously (Piepho 1994) that
empirical BLUPs based on a simple two-way ANOVA
model can be predictively more accurate that an
AMMI model least-squares estimate of cell means. In
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Table 5 MSEP (mean square
error of prediction; see eq. 14) of
least squares estimates based on
different fixed effects models for
oilseed rape (B. napus L.)
data-sets. Models were estimated
by least squares

Model 1985 1986 1987 1988 1989

B(k, g, e’, *) 46.70 42.15 32.86 31.08 47.82
B(k, g, e’, n

1
) 39.37 42.04 30.79 26.01 48.37

B(k, g, e’, n
2
) 38.90 43.52 29.21 25.20 44.91

B(k, g, e’, n
3
) 38.98 43.22 29.22 24.64 44.44

B(k, g, e’, n
4
) 38.39 43.08 28.69 24.07 44.83

B(k, g, e’, n
5
) 37.25 42.28 28.44 24.04 45.10

B(k, g, e’, n
6
) 37.09 42.23 28.42 23.56 45.58

B(k, g, e’, n
7
) 36.54 42.48 28.27 23.70 45.69

B(k, g, e’, n
8
) 42.77 28.21 23.45 46.21

B(k, g, e’, n
9
) 42.95 28.29 46.51

B(k, g, e’, n
10

) 42.96

B(k, *, e’, *) 72.88 60.40 56.52 43.85 57.14
B(k, *, e’, n

1
) 44.92 41.47 30.83 26.58 47.47

B(k, *, e’, n
2
) 39.05 42.66 29.07 25.81 46.76

B(k, *, e’, n
3
) 38.10 43.07 29.61 25.38 45.13

B(k, *, e’, n
4
) 38.62 43.88 29.35 24.19 44.51

B(k, *, e’, n
5
) 38.22 43.58 28.65 23.97 44.72

B(k, *, e’, n
6
) 37.36 42.46 27.90 23.62 44.84

B(k, *, e’, n
7
) 36.94 42.46 28.10 23.84 45.45

B(k, *, e’, n
8
) 36.54 42.60 27.95 23.73 45.61

B(k, *, e’, n
9
) 42.83 28.04 23.45 46.24

B(k, *, e’, n
10

) 42.97 28.29 46.51
B(k, *, e’, n

11
) 42.96

B(k, g, *, *) 46.70 42.15 32.86 31.08 47.82
B(k, g, *, n

1
) 43.50 41.32 31.39 30.13 48.19

B(k, g, *, n
2
) 40.07 42.59 29.18 26.22 44.86

B(k, g, *, n
3
) 38.99 42.90 29.65 25.52 45.35

B(k, g, *, n
4
) 38.10 42.76 29.44 24.71 44.67

B(k, g, *, n
5
) 38.21 41.93 28.83 24.14 45.09

B(k, g, *, n
6
) 37.15 42.23 28.56 24.04 45.12

B(k, g, *, n
7
) 36.54 42.59 28.39 23.48 45.45

B(k, g, *, n
8
) 42.62 28.30 23.45 46.19

B(k, g, *, n
9
) 42.89 28.29 46.51

B(k, g, *, n
10

) 42.96

B(k, *, *, *) 72.88 60.40 56.52 43.85 57.14
B(k, *, *, n

1
) 46.23 41.78 31.20 30.51 47.65

B(k, *, *, n
2
) 39.55 42.99 29.09 25.98 47.33

B(k, *, *, n
3
) 39.23 42.96 29.74 25.24 44.86

B(k, *, *, n
4
) 39.08 43.59 29.58 24.69 44.28

B(k, *, *, n
5
) 38.40 43.24 28.79 24.15 44.62

B(k, *, *, n
6
) 37.20 42.37 28.10 24.18 44.91

B(k, *, *, n
7
) 36.94 42.34 28.16 23.73 45.47

B(k, *, *, n
8
) 36.54 42.55 27.94 23.73 45.62

B(k, *, *, n
9
) 42.81 28.04 23.45 46.24

B(k, *, *, n
10

) 42.97 28.29 46.51
B(k, *, *, n

11
) 42.96

B(*, *, *, n
1
) 46.16 41.62 31.21 31.63 47.36

B(*, *, *, n
2
) 39.73 42.58 29.15 25.89 48.38

B(*, *, *, n
3
) 39.24 42.98 29.80 25.13 44.77

B(*, *, *, n
4
) 38.90 43.42 29.46 24.58 44.21

B(*, *, *, n
5
) 38.12 43.08 28.53 24.10 44.61

B(*, *, *, n
6
) 37.07 42.20 27.98 24.04 44.86

B(*, *, *, n
7
) 36.87 42.17 28.21 23.51 45.50

B(*, *, *, n
8
) 36.54 42.40 27.94 23.70 45.77

B(*, *, *, n
9
) 42.73 28.00 23.45 46.26

B(*, *, *, n
10

) 42.93 28.29 46.51
B(*, *, *, n

11
) 42.96

the present paper it has been shown how to obtain
BLUPs based on more complex models, specifically
based on models with multiplicative terms such as
AMMI and SHMM, which imply factor-analytic vari-

ance-covariance structures in a mixed-model frame-
work. It has been demonstrated by cross-validation
using real data that the simple variance-covariance
structures implied by ANOVA models, which assume
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that interaction effects are independent, may be predic-
tively inferior to other structures, which imply correla-
tions among interactions. In addition to models with
factor-analytic variance-covariance structure, several
other variance-covariance structures can be used (Wolf-
inger 1996; Denis et al. 1997). A comparison with the
factor-analytic variance-covariance structure would be
rewarding, but is beyond the scope of this paper.

Van Eeuwijk et al. (1995) suggested to obtain a geno-
type by environment BLUPs based on an ANOVA
mixed model and then subject this table to AMMI
analysis, using an SVD procedure. This procedure may
be seen as an approximation to the more direct ap-
proach of computing BLUPs based on a factor-ana-
lytic variance-covariance structure. The major approxi-
mation lies in the fact that an ANOVA model implies
stochastically independent interaction effects, while the
AMMI model, if viewed from a mixed-model perspect-
ive, implies correlated interactions.

In the data considered in this paper, BLUPs were
slightly better than the shrinkage estimators of Cornel-
ius et al. (1996) based on Gollob’s df. Cornelius et al.
(1996) proposed an iterative scheme to obtain shrink-
age estimators with a more appropriate df, and these
may fare better than those based on Gollob’s df. Also,
I have not considered shrinkage estimators based on
the B(k, *, *, n

k
) as of Cornelius et al. (1996), which may

perform somewhat better than the shrinkage es-
timators based on other models. An important advant-
age of BLUPs compared to shrinkage estimators of
Cornelius et al. (1996) is that they are easily obtained
for unbalanced data.

My experience with the rapeseed data-sets indicates
that fitting models with random main effects (here:
genotypic main effects) and a factor-analytic variance-
covariance structure on the residuals may be computa-
tionally much more demanding than the fitting of
models without genotypic main effects. Among models
with a factor-analytic variance-covariance structure, the
predictive accuracy of models with a random genotypic
main effect and the corresponding model without
genotypic main effects was small. Thus, if computational
resources are limiting, it may be sufficient to consider
only models without random main effects for prediction.

Finally, it is remarked that the embedding within
a mixed model framework allows models to be selected
using likelihood-based criteria (likelihood ratio tests,
information criteria) (see Wolfinger 1996; SAS Institute
1997). This may be preferable in practice to the com-
puter-intensive cross-validation. SAS code for fitting
mixed models used in this paper is available from the
author upon request.
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